Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Poly-(3-hexylthiophene) bottlebrush copolymers with tailored side-chain lengths and high charge carrier mobilities

Title data

Heinrich, Christian David ; Thelakkat, Mukundan:
Poly-(3-hexylthiophene) bottlebrush copolymers with tailored side-chain lengths and high charge carrier mobilities.
In: Journal of Materials Chemistry C. Vol. 4 (2016) . - pp. 5370-5378.
ISSN 2050-7534
DOI: https://doi.org/10.1039/C6TC01029F

Project information

Project title:
Project's official titleProject's id
solar technologies go hybridNo information

Project financing: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Abstract in another language

A series of well-defined poly(3-hexylthiophene) (P3HT) grafted bottled brushes PS-g-P3HT with different P3HT chain lengths were synthesized by a grafting-to approach using nitroxide mediated controlled radical polymerization. The influence of the side-chain length on the optical, thermal and electronic properties of these polymers is systematically studied and compared with the corresponding linear P3HTs. It can be shown that the optical, structural and electronic properties of the brushes depend heavily on the side chain lengths. The results of DSC, UV-Vis and AFM measurements reveal two important things. The brush polymers with low molecular weight P3HT side-chains do not crystallize and therefore exhibit very poor electronic properties. With an increase of the side-chain length, highly crystalline materials are obtained and a brush with a high molecular weight (144 kg mol-1) carrying long P3HT side chains (17 000 g mol-1) is necessary to obtain crystalline lamellar structures and the best charge transport properties. For the first time P3HT brush polymers are reported that can match the excellent electronic properties of their linear counterparts in the range of 10-2 cm2 V-1 s-1. Additionally, the brush polymers exhibit better thin film stability at elevated temperatures compared to linear P3HTs.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Applied Functional Polymers > Professorship Applied Functional Polymers - Univ.-Prof. Dr. Mukundan Thelakkat
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Energy Research and Energy Technology
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 7
Graduate Schools
Graduate Schools > Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT)
Graduate Schools > Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT) > Photophysics of Synthetic and Biological Multichromophoric Systems
Research Institutions
Research Institutions > Collaborative Research Centers, Research Unit
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Applied Functional Polymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science
500 Science > 540 Chemistry
Date Deposited: 07 Jul 2016 06:53
Last Modified: 22 Jul 2016 04:58
URI: https://eref.uni-bayreuth.de/id/eprint/32909