Titelangaben
Müller, Christian J. ; Klein, Tobias ; Gann, Eliot ; McNeill, Christopher R. ; Thelakkat, Mukundan:
Azido-Functionalized Thiophene as a Versatile Building Block To Cross-Link Low-Bandgap Polymers.
In: Macromolecules.
Bd. 49
(2016)
Heft 10
.
- S. 3749-3760.
ISSN 1520-5835
DOI: https://doi.org/10.1021/acs.macromol.5b02659
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID solar technologies go hybrid Ohne Angabe |
---|---|
Projektfinanzierung: |
Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst |
Abstract
We unveil a concept for the design of cross-linkable semiconducting polymers that is based on a modular tercopolymerization which stands out by its low synthetic effort, easy accessibility, and its broad range of applications. 3-(6-Azidohexyl)thiophene was used as a comonomer in the synthesis of a variety of low-bandgap copolymers using different polymerization techniques such as Suzuki–Miyaura cross-coupling and Stille cross-coupling. We show that when only a small amount (5–10 mol %) of azide groups is introduced into the polymers, the impact on absorption and electrochemical properties (HOMO/LUMO values) is negligible. The small amount of azide functionality is however enough to obtain polymers that can easily be cross-linked by UV illumination. Thermal stability of the solid state packing and alignment is studied in neat polymer thin films as well as in blends with 6,6-phenyl-C71-butyric acid methyl ester (PC70BM) as a relevant model blend system. Solvent resistivity of these polymer films is investigated by absorption and photoluminescence measurements. It is finally shown in organic field effect transistors that the introduction of 10\% azide-functionalized monomer does not considerably influence hole transport mobility (0.20–0.45 cm2 V–1 s–1).