Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Terapascal static pressure generation with ultrahigh yield strength nanodiamond

Title data

Dubrovinskaia, Natalia ; Dubrovinsky, Leonid ; Solopova, Natalia A. ; Abakumov, Artem M. ; Turner, Stuart ; Hanfland, Michael ; Bykova, Elena ; Bykov, Maxim ; Prescher, Clemens ; Prakapenka, Vitali B. ; Petitgirard, Sylvain ; Chuvashova, Irina ; Gasharova, Biliana ; Mathis, Yves-Laurent ; Ershov, Petr ; Snigireva, Irina ; Snigirev, Anatoly:
Terapascal static pressure generation with ultrahigh yield strength nanodiamond.
In: Science Advances. Vol. 2 (2016) Issue 7 . - e1600341.
ISSN 2375-2548
DOI: https://doi.org/10.1126/sciadv.1600341

Official URL: Volltext

Abstract in another language

Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Research Institutions > Research Centres > Bavarian Research Institute of Experimental Geochemistry and Geophysics - BGI
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
Date Deposited: 28 Apr 2017 09:02
Last Modified: 19 May 2017 10:02
URI: https://eref.uni-bayreuth.de/id/eprint/36883