Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Large sets of subspace designs

Titelangaben

Braun, Michael ; Kiermaier, Michael ; Kohnert, Axel ; Laue, Reinhard:
Large sets of subspace designs.
In: Journal of Combinatorial Theory, Series A. Bd. 147 (2017) . - S. 155-185.
ISSN 0097-3165
DOI: https://doi.org/10.1016/j.jcta.2016.11.004

Abstract

In this article, three types of joins are introduced for subspaces of a vector space. Decompositions of the Graßmannian into joins are discussed. This framework admits a generalization of large set recursion methods for block designs to subspace designs.

We construct a 2-(6,3,78)_5 design by computer, which corresponds to a halving LS_5[2](2,3,6). The application of the new recursion method to this halving and an already known LS_3[2](2,3,6) yields two infinite two-parameter series of halvings LS_3[2](2,k,v) and LS_5[2](2,k,v) with integers v => 6, v == 2 (mod 4), and 3 <= k <= v-3, k == 3 ( mod 4).

Thus in particular, two new infinite series of nontrivial subspace designs with t=2 are constructed. Furthermore as a corollary, we get the existence of infinitely many nontrivial large sets of subspace designs with t=2.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: q-analog; combinatorial design; subspace design; large set; halving
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 04 Mai 2017 11:07
Letzte Änderung: 08 Feb 2024 09:39
URI: https://eref.uni-bayreuth.de/id/eprint/36946