Titelangaben
Kiermaier, Michael ; Zwanzger, Johannes:
New ring-linear codes from dualization in projective Hjelmslev geometries.
In: Designs, Codes and Cryptography.
Bd. 66
(2013)
Heft 1–3
.
- S. 39-55.
ISSN 1573-7586
DOI: https://doi.org/10.1007/s10623-012-9650-1
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Konstruktive Methoden in der algebraischen Codierungstheorie für lineare Codes über endlichen Kettenringen WA 1666/4 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
In this article, several new constructions for ring-linear codes are given. The class of base rings are the Galois rings of characteristic 4, which include ℤ₄ as its smallest and most important member. Associated with these rings are the Hjelmslev geometries, and the central tool for the construction is geometric dualization. Applying it to the ℤ₄-preimages of the Kerdock codes and a related family of codes we will call Teichmüller codes, we get two new infinite series of codes and compute their symmetrized weight enumerators. In some cases, residuals of the original code give further interesting codes. The generalized Gray map translates our codes into ordinary, generally non-linear codes in the Hamming space. The obtained parameters include (58, 2⁷, 28)₂, (60, 2⁸, 28)₂, (114, 2⁸, 56)₂, (372, 2¹⁰, 184)₂ and (1988, 2¹², 992)₂ which provably have higher minimum distance than any linear code of equal length and cardinality over an alphabet of the same size (better-than-linear, BTL), as well as (180, 2⁹, 88)₂, (244, 2⁹, 120)₂, (484, 2¹⁰, 240)₂ and (504, 4⁶, 376)₄ where no comparable (in the above sense) linear code is known (better-than-known-linear, BTKL).
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | ring-linear code; Kerdock code; Lee weight; homogeneous weight; Galois ring; Gray map; Hjelmslev geometry |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 20 Nov 2014 08:00 |
Letzte Änderung: | 23 Nov 2022 07:36 |
URI: | https://eref.uni-bayreuth.de/id/eprint/3727 |