Titelangaben
Siksek, Samir ; Stoll, Michael:
On a problem of Hajdu and Tengely.
In:
Hanrot, Guillaume ; Morain, Francois ; Thomé, Emmanuel (Hrsg.): Algorithmic Number Theory : 9th international symposium, ANTS-IX, Nancy, France, July 19-23, 2010, proceedings. -
Heidelberg
: Springer
,
2010
. - S. 316-330
. - (Lecture Notes in Computer Science
; 6197
)
ISBN 978-3-642-14517-9
DOI: https://doi.org/10.1007/978-3-642-14518-6_25
Abstract
We prove a result that finishes the study of primitive arithmetic progressions consisting of squares and fifth powers that was carried out by Hajdu and Tengely in a recent paper: The only arithmetic progression in coprime integers of the form (a², b², c², d⁵) is (1, 1, 1, 1). For the proof, we first reduce the problem to that of determining the sets of rational points on three specific hyperelliptic curves of genus 4. A 2-cover descent computation shows that there are no rational points on two of these curves. We find generators for a subgroup of finite index of the Mordell-Weil group of the last curve. Applying Chabauty’s method, we prove that the only rational points on this curve are the obvious ones.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) > Lehrstuhl Mathematik II (Computeralgebra) - Univ.-Prof. Dr. Michael Stoll Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 01 Dec 2014 11:13 |
Letzte Änderung: | 01 Dec 2014 11:13 |
URI: | https://eref.uni-bayreuth.de/id/eprint/4465 |