Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Locating human splenic capillary sheaths in virtual reality

Title data

Steiniger, Birte S. ; Wilhelmi, V. ; Berthold, Moritz ; Guthe, Michael ; Lobachev, Oleg:
Locating human splenic capillary sheaths in virtual reality.
In: Scientific Reports. Vol. 8 (24 October 2018) . - Art.Nr. 15720.
ISSN 2045-2322
DOI: https://doi.org/10.1038/s41598-018-34105-3

Abstract in another language

Stromal capillary sheath cells in human spleens strongly express CD271, the low affinity nerve growth factor receptor p75. Serial sections of a representative adult human spleen were double-stained for CD271 versus smooth muscle alpha actin (SMA) plus CD34 to visualise capillary sheaths, the arterial tree and endothelial cells by transmitted light. Preliminary three-dimensional (3D) reconstructions of single regions were inspected in virtual reality (VR). This method showed that a large number of CD271+ sheaths occur in a post-arteriolar position often surrounding capillaries located close to divisions of arterioles. The length and diameter of capillary sheaths are rather heterogeneous. Long sheaths were observed to accompany one or two generations of capillary branches. We hypothesise that human splenic capillary sheaths may attract recirculating B-lymphocytes from the open circulation of the red pulp to start their migration into white pulp follicles along branches of the arterial tree. In addition, they may provide sites of interaction among sheath macrophages and B-lymphocytes. Our innovative approach allows stringent quality control by inserting the original immunostained serial sections into the 3D model for viewing and annotation in VR. Longer series of sections will allow to unequivocally localise most of the capillary sheaths in a given volume.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Computer Science > Professorship Applied Computer Science V > Professorship Applied Computer Science V - Univ.-Prof. Dr. Michael Guthe
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Computer Science > Professorship Applied Computer Science V
Result of work at the UBT: Yes
DDC Subjects: 000 Computer Science, information, general works > 004 Computer science
600 Technology, medicine, applied sciences > 610 Medicine and health
Date Deposited: 29 Oct 2018 07:47
Last Modified: 30 Oct 2018 05:58
URI: https://eref.uni-bayreuth.de/id/eprint/46161