Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Discrete Filippov-type stability for one-sided Lipschitzian difference inclusions

Titelangaben

Baier, Robert ; Farkhi, Elza:
Discrete Filippov-type stability for one-sided Lipschitzian difference inclusions.
In: Feichtinger, Gustav ; Kovacevic, Raimund M. ; Tragler, Gernot (Hrsg.): Control Systems and Mathematical Methods in Economics : Essays in Honor of Vladimir M. Veliov. - Cham : Springer , 2018 . - S. 27-55 . - (Lecture Notes in Economics and Mathematical Systems ; 687 )
ISBN 978-3-319-75168-9
DOI: https://doi.org/10.1007/978-3-319-75169-6_3

Rez.:

Dies ist die aktuelle Version des Eintrags.

Weitere URLs

Angaben zu Projekten

Projektfinanzierung: Andere
The Hermann Minkowski Center for Geometry at Tel Aviv University, Israel

Abstract

We state and prove Filippov-type stability theorems for discrete difference inclusions obtained by the Euler discretization of a differential inclusion with perturbations in the set of initial points, in the right-hand side and in the state variable. We study the cases in which the right-hand side of the inclusion is not necessarily Lipschitz, but satisfies a weaker one-sided Lipschitz (OSL) or strengthened one-sided Lipschitz (SOSL) condition. The obtained estimates imply stability of the discrete solutions for infinite number of fixed time steps if the OSL constant is negative and the perturbations are bounded in certain norms. We show a better order of stability for SOSL right-hand sides and apply our theorems to estimate the distance from the solutions of other difference methods, as for the implicit Euler scheme to the set of solutions of the Euler scheme. We also prove a discrete relaxation stability theorem for the considered difference inclusion, which also extends a theorem of G. Grammel (2003) from the class of Lipschitz maps to the wider class of OSL ones.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: one-sided Lipschitz condition; strengthened one-sided Lipschitz condition; set-valued Euler’s method; differential inclusions
Fachklassifikationen: Mathematics Subject Classification Code: 34A60 47H05 (39A30 54C60)
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 31 Okt 2018 12:38
Letzte Änderung: 31 Okt 2018 12:38
URI: https://eref.uni-bayreuth.de/id/eprint/46180

Zu diesem Eintrag verfügbare Versionen