Titelangaben
Baier, Robert ; Braun, Philipp ; Grüne, Lars ; Kellett, Christopher M.:
Numerical construction of nonsmooth control Lyapunov functions.
In: Giselsson, Pontus ; Rantzer, Anders
(Hrsg.):
Large-Scale and Distributed Optimization. -
Cham
: Springer
,
2018
. - S. 343-373
. - (Lecture Notes in Mathematics
; 2227
)
ISBN 978-3-319-97477-4
DOI: https://doi.org/10.1007/978-3-319-97478-1_12
Rez.: |
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Activating Lyapunov-Based Feedback - Nonsmooth Control Lyapunov Functions G1500106 |
---|---|
Projektfinanzierung: |
ARC (Australian Research Council) |
Abstract
Abstract Lyapunov’s second method is one of the most successful tools for analyzing stability properties of dynamical systems. If a control Lyapunov function is known, asymptotic stabilizability of an equilibrium of the corresponding dynamical system can be concluded without the knowledge of an explicit solution of the dynamical system. Whereas necessary and sufficient conditions for the existence of nonsmooth control Lyapunov functions are known by now, constructive methods to generate control Lyapunov functions for given dynamical systems are not known up to the same extent. In this paper we build on previous work to compute (control) Lyapunov functions based on linear programming and mixed integer linear programming. In particular, we propose a mixed integer linear program based on a discretization of the state space where a continuous piecewise affine control Lyapunov function can be recovered from the solution of the optimization problem. Different to previous work, we incorporate a semiconcavity condition into the formulation of the optimization problem. Results of the proposed scheme are illustrated on the example of Artstein’s circles and on a two-dimensional system with two inputs. The underlying optimization problems are solved in Gurobi.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | Contents:
12.1. Introduction 12.2. Mathematical setting 12.3. Continuous piecewise affine functions 12.3.1 Discretization of the state space 12.3.2 Continuous piecewise affine functions 12.4. The decrease condition of control Lyapunov functions 12.4.1 The decrease condition for piecewise affine functions 12.4.2 Semiconcavity conditions 12.4.3 Local minimum condition 12.4.4 A finite dimensional optimization problem 12.5. Reformulation as mixed integer linear programming problem 12.5.1 Approximation of system parameters and reformulation of nonlinear constraints 12.5.2 The mixed integer linear programming formulation 12.6. Numerical examples 12.6.1 Artstein's circles 12.6.2 A two-dimensional example with two inputs 12.7. Conclusions |
Keywords: | Control Lyapunov functions; Mixed integer programming; Dynamical systems |
Fachklassifikationen: | Mathematics Subject Classification Code: 93D30 (90C11 93D05 90C05) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik (Angewandte Mathematik) Profilfelder > Advanced Fields > Nichtlineare Dynamik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Profilfelder Profilfelder > Advanced Fields |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 14 Nov 2018 07:41 |
Letzte Änderung: | 03 Sep 2020 12:21 |
URI: | https://eref.uni-bayreuth.de/id/eprint/46318 |
Zu diesem Eintrag verfügbare Versionen
-
Numerical construction of nonsmooth control Lyapunov functions. (deposited 21 Okt 2017 21:00)
- Numerical construction of nonsmooth control Lyapunov functions. (deposited 14 Nov 2018 07:41) [Aktuelle Anzeige]