Titelangaben
    
    Buratti, Marco ; Kiermaier, Michael ; Kurz, Sascha ; Nakić, Anamari ; Wassermann, Alfred:
q-analogs of group divisible designs.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2019
    . - 18 S.
    
    
    
     
    
    
    
    
     
  
  
Dies ist die aktuelle Version des Eintrags.
Angaben zu Projekten
| Projekttitel: | 
               Offizieller Projekttitel Projekt-ID Ganzzahlige Optimierungsmodelle für Subspace Codes und endliche Geometrie 266952998  | 
        
|---|---|
| Projektfinanzierung: | 
            
              Deutsche Forschungsgemeinschaft | 
        
Abstract
A well known class of objects in combinatorial design theory are group divisible designs.Here, we introduce the q-analogs of group divisible designs. It turns out that there are interesting connections to scattered subspaces, q-Steiner systems, design packings and q^r-divisible projective sets. We give necessary conditions for the existence of q-analogs of group divisible designs, construct an infinite series of examples, and provide further existence results with the help of a computer search. One example is a (6,3,2,2)₂ group divisible design over GF(2) which is a design packing consisting of 180 blocks that such every 2-dimensional subspace in GF(2)⁶ is covered at most twice.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
- 
q-analogs of group divisible designs. (deposited 05 Mai 2018 21:00)
- q-analogs of group divisible designs. (deposited 12 Mär 2019 15:38) [Aktuelle Anzeige]
 
 
        
 bei Google Scholar