Titelangaben
    
    Kiermaier, Michael ; Kurz, Sascha:
On the lengths of divisible codes.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2019
    . - 17 S.
    
    
    
     
    
    
    
    
     
  
  
Angaben zu Projekten
| Projekttitel: | 
               Offizieller Projekttitel Projekt-ID Ganzzahlige Optimierungsmodelle für Subspace Codes und endliche Geometrie 266952998  | 
        
|---|---|
| Projektfinanzierung: | 
            
              Deutsche Forschungsgemeinschaft | 
        
Abstract
In this article, the effective lengths of all q^r-divisible linear codes over GF(q) with a non-negative integer r are determined. For that purpose, the S_q(r)-adic expansion of an integer n is introduced. It is shown that there exists a q^r-divisible GF(q)-linear code of effective length n if and only if the leading coefficient of the S_q(r)-adic expansion of n is non-negative. Furthermore, the maximum weight of a q^r-divisible code of effective length n is at most the cross-sum of the S_q(r)-adic expansion of n.
This result has applications in Galois geometries.
A recent theorem of Nastase and Sissokho on the maximum sizes of partial spreads follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.
        
 bei Google Scholar