Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Molecular analysis of the phosphoenolpyruvate-dependent L-sorbose : phosphotransferase system from Klebsiella pneumoniae and of its multidomain structure

Title data

Wehmeier, Udo F. ; Wöhrl, Birgitta ; Lengeler, Joseph W.:
Molecular analysis of the phosphoenolpyruvate-dependent L-sorbose : phosphotransferase system from Klebsiella pneumoniae and of its multidomain structure.
In: Molecular and General Genetics. Vol. 246 (1995) Issue 5 . - pp. 610-618.
ISSN 0026-8925
DOI: https://doi.org/10.1007/BF00298968

Abstract in another language

We have cloned a 3.4 kb DNA fragment from the chromosome of Klebsiella pneumoniae that codes for a phosphoenolpyruvate-dependent L-sorbose: phosphotransferase system (PTS). The cloned fragment was sequenced and four open reading frames coding for 135 (sorF), 164 (sorB), 266 (sorA) and 274 (sorM) amino acids, respectively, were found. The corresponding proteins could be detected in a T7 overexpression system, which yielded molecular masses of about 14,000 for SorF, 19,000 for SorB, 25,000 for SorA and 27,000 for SorM. SorF and SorB have all the characteristics of soluble and intracellular proteins in accordance with their functions as EIIASor and EIIBSor domains of the L-sorbose PTS. SorA and SorM, by contrast, are strongly hydrophobic, membrane-bound proteins with two to five putative transmembrane helices that alternate with a series of hydrophilic loops. They correspond to domains EIICSor and EIIDSor. The four proteins of the L-sorbose PTS resemble closely (27%-60%) the four subunits of a D-fructose PTS (EIIALev, EIIBLev, EIICLev, and EIIDLev) from Bacillus subtilis and the three subunits of the D-mannose PTS (EIIA,BMan, EIICMan, and EIIDMan) from Escherichia coli K-12. The three systems constitute a new PTS family, and sequence comparisons revealed highly conserved structures for the membrane-bound proteins. A consensus sequence for the membrane proteins was used to postulate a model for their integration into the membrane.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biopolymers
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biopolymers > Lehrstuhl Biopolymere - Apl. Prof. Dr. Birgitta Wöhrl
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 20 May 2019 08:02
Last Modified: 20 May 2019 08:02
URI: https://eref.uni-bayreuth.de/id/eprint/49001