Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar


On the ATP-dependent activation of the radical enzyme (R)-2-hydroxyisocaproyl-CoA dehydratase

Title data

Knauer, Stefan H. ; Buckel, Wolfgang ; Dobbek, Holger:
On the ATP-dependent activation of the radical enzyme (R)-2-hydroxyisocaproyl-CoA dehydratase.
In: Biochemistry. Vol. 51 (2012) Issue 33 . - pp. 6609-6622.
ISSN 1520-4995
DOI: https://doi.org/10.1021/bi300571z

Abstract in another language

Members of the 2-hydroxyacyl-CoA dehydratase enzyme family catalyze the β,α-dehydration of various CoA-esters in the fermentation of amino acids by clostridia. Abstraction of the nonacidic β-proton of the 2-hydroxyacyl-CoA compounds is achieved by the reductive generation of ketyl radicals on the substrate, which is initiated by the transfer of an electron at low redox potentials. The highly energetic electron needed on the dehydratase is donated by a [4Fe-4S] cluster containing ATPase, termed activator. We investigated the activator of the 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile. The activator is a homodimeric protein structurally related to acetate and sugar kinases, Hsc70 and actin, and has a [4Fe-4S] cluster bound in the dimer interface. The crystal structures of the Mg-ADP, Mg-ADPNP, and nucleotide-free states of the reduced activator have been solved at 1.6-3.0 Å resolution, allowing us to define the position of Mg(2+) and water molecules in the vicinity of the nucleotides and the [4Fe-4S] cluster. The structures reveal redox- and nucleotide dependent changes agreeing with the modulation of the reduction potential of the [4Fe-4S] cluster by conformational changes. We also investigated the propensity of the activator to form a complex with its cognate dehydratase in the presence of Mg-ADP and Mg-ADPNP and together with the structural data present a refined mechanistic scheme for the ATP-dependent electron transfer between activator and dehydratase.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biopolymers > Lehrstuhl Biopolymere - Apl. Prof. Dr. Birgitta Wöhrl
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 27 May 2019 08:58
Last Modified: 27 May 2019 08:58
URI: https://eref.uni-bayreuth.de/id/eprint/49099