Titelangaben
Dumpert, Florian:
Quantitative Robustness of Localized Support Vector Machines.
Bayreuth
,
2019
Abstract
The huge amount of available data nowadays is a challenge for kernel-based machine learning algorithms like SVMs with respect to runtime and storage capacities. Local approaches might help to relieve these issues and to improve statistical accuracy. It has already been shown that these local approaches are consistent and robust in a basic sense. This article refines the analysis of robustness properties towards the so-called influence function which expresses the differentiability of the learning method: We show that thereis a differentiable dependency of our locally learned predictor on the underlying distribution. The assumptions of the proventheorems can be verified without knowing anything about this distribution. This makes the results interesting also from an applied point of view.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | Machine learning; localized learning; robustness; influence function |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik > Lehrstuhl Mathematik VII - Stochastik - Univ.-Prof. Dr. Andreas Christmann Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 06 Jun 2019 06:28 |
Letzte Änderung: | 06 Jun 2019 06:28 |
URI: | https://eref.uni-bayreuth.de/id/eprint/49271 |