Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell-Weil rank

Titelangaben

Stoll, Michael:
Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell-Weil rank.
In: Journal of the European Mathematical Society. Bd. 21 (2019) Heft 3 . - S. 923-956.
ISSN 1435-9855
DOI: https://doi.org/10.4171/JEMS/857

Abstract

We show that there is a bound depending only on g,r and [K:Q] for the number of K-rational points on a hyperelliptic curve C of genus g over a number field K such that the Mordell–Weil rank r of its Jacobian is at most g–3. If K=Q, an explicit bound is 8rg+33(g–1)+1.

The proof is based on Chabauty’s method; the new ingredient is an estimate for the number of zeros of an abelian logarithm on a p-adic ‘annulus’ on the curve, which generalizes the standard bound on disks. The key observation is that for a p-adic field k, the set of k-points on C can be covered by a collection of disks and annuli whose number is bounded in terms of g (and k).

We also show, strengthening a recent result by Poonen and the author, that the lower density of hyperelliptic curves of odd degree over Q whose only rational point is the point at infinity tends to 1 uniformly over families defined by congruence conditions, as the genus g tends to infinity.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Rational points on curves; uniform bounds; Chabauty’s method; p-adic integration; Mordell–Lang conjecture; Zilber–Pink conjectures
Fachklassifikationen: Mathematics Subject Classification (2010): Primary 11G30, 14G05; Secondary 14G25, 14H25, 14H40
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) > Lehrstuhl Mathematik II (Computeralgebra) - Univ.-Prof. Dr. Michael Stoll
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 19 Aug 2019 08:03
Letzte Änderung: 19 Aug 2019 08:03
URI: https://eref.uni-bayreuth.de/id/eprint/51924