Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Diagonal genus 5 curves, elliptic curves over ℚ(t), and rational diophantine quintuples

Titelangaben

Stoll, Michael:
Diagonal genus 5 curves, elliptic curves over ℚ(t), and rational diophantine quintuples.
In: Acta Arithmetica. Bd. 190 (2019) Heft 3 . - S. 239-261.
ISSN 0065-1036
DOI: https://doi.org/10.4064/aa180416-4-10

Abstract

The problem of finding all possible extensions of a given rational diophantine quadruple to a rational diophantine quintuple is equivalent to the determination of the set of rational points on a certain curve of genus 5 that can be written as an intersection of three diagonal quadrics in P4. We discuss how one can (try to) determine the set of rational points on such a curve. We apply our approach to the original question in several cases. In particular, we show that Fermat’s diophantine quadruple (1,3,8,120) can be extended to a rational diophantine quintuple in only one way, namely by 777480/8288641.

We then discuss a method that allows us to find the Mordell–Weil group of an elliptic curve E defined over the rational function field Q(t) when E has full Q(t)-rational 2-torsion. This builds on recent results of Dujella, Gusić and Tadić. We give several concrete examples to which this method can be applied. One of these results implies that there is only one extension of the diophantine quadruple (t−1,t+1,4t,4t(4t2−1)) over Q(t).

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: diophantine quintuples; rational points; elliptic curves
Fachklassifikationen: 2010 Mathematics Subject Classification: Primary 11D09, 11G05, 11G30, 14G05, 14H40; Secondary 11Y50, 14G25, 14G27, 14H25, 14H52
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) > Lehrstuhl Mathematik II (Computeralgebra) - Univ.-Prof. Dr. Michael Stoll
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 19 Aug 2019 08:09
Letzte Änderung: 19 Aug 2019 08:09
URI: https://eref.uni-bayreuth.de/id/eprint/51926