Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Decisions with a continuum of options

Titelangaben

Kurz, Sascha ; Moyouwou, Issofa ; Touyem, Hilaire:
Decisions with a continuum of options.
2019
Veranstaltung: Application-Oriented Computational Social Choice , 15.-20.09.2019 , Wadern, Deutschland.
(Veranstaltungsbeitrag: Workshop , Vortrag )

Abstract

The Shapley-Shubik index was designed to evaluate the power distribution in committee systems drawing binary decisions and is one of the most established power indices. It was generalized to decisions with more than two levels of approval in the input and output. In the limit we have a continuum of options. You may think of e.g. tax rates. For these games with interval decisions we prove an axiomatization of a power measure and show that the Shapley-Shubik index for simple games, as well as for (j,k) simple games, occurs as a special discretization. This relation and the closeness of the stated axiomatization to the classical case suggests to speak of the Shapley-Shubik index for games with interval decisions, that can also be generalized to a value. Also for the Penrose-Banzhaf index there exists a variant for games with interval decisions in the literature on aggregation function. The general framework of games with a continuum of options deserves to be explored more. We collect a list of some open problems in that direction.

Weitere Angaben

Publikationsform: Veranstaltungsbeitrag (Vortrag)
Begutachteter Beitrag: Nein
Zusätzliche Informationen: speaker: Sascha Kurz
Keywords: simple games; decisions with a continuum of options; aggregation functions; power indices; Shapley-Shubik index
Fachklassifikationen: Mathematics Subject Classification Code: 91A40 91A80 91B12
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik
Profilfelder > Emerging Fields > Governance and Responsibility
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Profilfelder
Profilfelder > Emerging Fields
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 320 Politikwissenschaft
300 Sozialwissenschaften > 330 Wirtschaft
500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 16 Sep 2019 08:44
Letzte Änderung: 16 Sep 2019 08:44
URI: https://eref.uni-bayreuth.de/id/eprint/52238