Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants

Title data

Kerl, Carolin F. ; Schindele, Ruth Alina ; Brüggenwirth, Lena ; Colina Blanco, Andrea E. ; Rafferty, Colleen ; Clemens, Stephan ; Planer-Friedrich, Britta:
Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants.
In: Environmental Science & Technology. Vol. 53 (21 May 2019) Issue 10 . - pp. 5787-5796.
ISSN 0013-936X
DOI: https://doi.org/10.1021/acs.est.9b00592

Project information

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

Methylated and inorganic thioarsenates have recently been reported from paddy fields besides the better-known oxyarsenates. Methylated thioarsenates are highly toxic for humans, yet their uptake, transformation, and translocation in rice plants is unknown. Here, hydroponic experiments with 20 day old rice plants showed that monomethylmonothioarsenate (MMMTA), dimethylmonothioarsenate (DMMTA), and monothioarsenate (MTA) were taken up by rice roots and could be detected in the xylem. Total arsenic (As) translocation from roots to shoots was higher for plants exposed to DMMTA, MTA, and dimethylarsenate (DMA) compared to MMMTA and monomethylarsenate (MMA). All thioarsenates were partially transformed in the presence of rice roots, but processes and extents differed. MMMTA was subject to abiotic oxidation and largely dethiolated to MMA already outside the plant, probably due to root oxygen loss. DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either as DMA or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid extraction, DMMTA is determined as DMA and thus escapes regulation despite its toxicity.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Physiology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Physiology > Chair Plant Physiology - Univ.-Prof. Dr. Stephan Clemens
Faculties
Result of work at the UBT: Yes
DDC Subjects: 500 Science
500 Science > 570 Life sciences, biology
500 Science > 580 Plants (Botany)
Date Deposited: 25 Sep 2019 07:45
Last Modified: 26 Sep 2019 05:52
URI: https://eref.uni-bayreuth.de/id/eprint/52385