Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Poly(3-alkylthiophene)-block-poly(3-alkylselenophene)s : Conjugated Diblock Co-polymers with Atypical Self-Assembly Behavior

Titelangaben

Kynaston, Emily L. ; Winchell, K. J. ; Yee, Patrick Y. ; Manion, Joseph G. ; Hendsbee, Arthur D. ; Li, Yuning ; Hüttner, Sven ; Tolbert, Sarah H. ; Seferos, Dwight S.:
Poly(3-alkylthiophene)-block-poly(3-alkylselenophene)s : Conjugated Diblock Co-polymers with Atypical Self-Assembly Behavior.
In: ACS Applied Materials & Interfaces. Bd. 11 (2019) Heft 7 . - S. 7174-7183.
ISSN 1944-8252
DOI: https://doi.org/10.1021/acsami.8b18795

Abstract

Understanding self-assembly behavior and resulting morphologies in block co-polymer films is an essential aspect of chemistry and materials science. Although the self-assembly of amorphous coil–coil block co-polymers is relatively well understood, that of semicrystalline block co-polymers where each block has distinct crystallization properties remains unclear. Here, we report a detailed study to elucidate the rich self-assembly behavior of conjugated thiophene–selenophene (P3AT-b-P3AS) block co-polymers. Using a combination of microscopy and synchrotron-based X-ray techniques, we show that three different film morphologies, denoted as lamellae, co-crystallized fibers, and patchy fibers, arise from the self-assembly of these block co-polymers over a relatively narrow range of overall degrees of polymerization (30 < N < 90). Crystallization-driven phase separation occurs at a very low N (<35), and lamellar films are formed. Conversely, at medium N (50–60) and high N (>80), the thiophene and selenophene blocks co-crystallize into nanofibers, where medium N leads to much more mixing than high N. The overall tendency for phase separation in these systems follows rather different trends than phase separation in amorphous polymers in that we observe the greatest degree of phase separation at the lowest N. Finally, we demonstrate how each morphology influences transport properties in organic thin-film transistors comprised of these conjugated polymers.Understanding self-assembly behavior and resulting morphologies in block co-polymer films is an essential aspect of chemistry and materials science. Although the self-assembly of amorphous coil–coil block co-polymers is relatively well understood, that of semicrystalline block co-polymers where each block has distinct crystallization properties remains unclear. Here, we report a detailed study to elucidate the rich self-assembly behavior of conjugated thiophene–selenophene (P3AT-b-P3AS) block co-polymers. Using a combination of microscopy and synchrotron-based X-ray techniques, we show that three different film morphologies, denoted as lamellae, co-crystallized fibers, and patchy fibers, arise from the self-assembly of these block co-polymers over a relatively narrow range of overall degrees of polymerization (30 < N < 90). Crystallization-driven phase separation occurs at a very low N (<35), and lamellar films are formed. Conversely, at medium N (50–60) and high N (>80), the thiophene and selenophene blocks co-crystallize into nanofibers, where medium N leads to much more mixing than high N. The overall tendency for phase separation in these systems follows rather different trends than phase separation in amorphous polymers in that we observe the greatest degree of phase separation at the lowest N. Finally, we demonstrate how each morphology influences transport properties in organic thin-film transistors comprised of these conjugated polymers.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Ehemalige Professoren > Juniorprofessur Solarenergie - Juniorprof. Dr. Sven Hüttner
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Juniorprofessur Solarenergie
Profilfelder
Profilfelder > Advanced Fields
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Ehemalige Professoren
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 27 Sep 2019 09:06
Letzte Änderung: 02 Nov 2022 10:46
URI: https://eref.uni-bayreuth.de/id/eprint/52488