Titelangaben
Grüne, Lars ; Schaller, Manuel ; Schiela, Anton:
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations.
In: Journal of Differential Equations.
Bd. 268
(2020)
Heft 12
.
- S. 7311-7341.
ISSN 1090-2732
DOI: https://doi.org/10.1016/j.jde.2019.11.064
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Specialized Adaptive Algorithms for Model Predictive Control of PDEs GR 1569/17-1 Specialized Adaptive Algorithms for Model Predictive Control of PDEs SCHI 1379/5-1 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
We analyze the sensitivity of linear quadratic optimal control problems governed by general evolution equations with bounded or admissible control operator. We show, that if the problem is stabilizable and detectable, the solution of the extremal equation can be bounded by the right-hand side including initial data with the bound being independent of the time horizon. Consequently, the influence of perturbations of the extremal equations decays exponentially in time. This property can for example be used to construct efficient space and time discretizations for a Model Predictive Control scheme. Furthermore, a turnpike property for unbounded but admissible control of general semigroups can be deduced.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. (deposited 19 Dec 2018 06:07)
-
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. (deposited 14 Jan 2020 06:32)
- Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. (deposited 15 Jan 2020 07:11) [Aktuelle Anzeige]
-
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. (deposited 14 Jan 2020 06:32)