Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa

Titelangaben

Schleuss, Per-Marten ; Widdig, Meike ; Heintz-Buschart, Anna ; Guhr, Alexander ; Martin, Sarah ; Kirkman, Kevin ; Spohn, Marie:
Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa.
In: Soil Biology & Biochemistry. Bd. 135 (2019) . - S. 294-303.
ISSN 0038-0717
DOI: https://doi.org/10.1016/j.soilbio.2019.05.018

Abstract

Terrestrial ecosystems have experienced rising nitrogen (N) inputs during the last decades with consequences for belowground carbon (C) and N dynamics. This study investigates how long-term N and phosphorus (P) additions affect microbial community composition, and to what extent microbial homeostasis explains changes in different processes involved in soil C and N cycling in response to nutrient addition. We studied a 66-year-old nutrient addition experiment in a mesic grassland in South Africa, consisting of four different levels of N addition (0, 7, 14, and 21 g N m−2 yr−1) with and without P addition (0, and 9 g P m−2 yr−1).Despite strong changes in the microbial community (observed through 16S rRNA gene and ITS amplicon sequencing), the microbial biomass C:N ratio did not change. N addition decreased microbial N acquisition as indicated by reduced leucine-aminopeptidase activity, and increased microbial net N mineralization. In contrast, predicted relative abundances of functional genes involved in degradation of labile C compounds (e.g. cellulose, hemicellulose, and chitin) as well as β-glucosidase and N-acetylglucosaminidase activities increased with elevated N availability. In combination, this pointed to a more intensive investment of microorganisms into C acquisition upon N addition. In contrast, N addition and associated soil acidification decreased microbial biomass and respiration and altered the community composition with prokaryotes being more affected than fungi. Nitrogen addition increased the relative abundance of gram-positive over gram-negative bacteria and favored taxa with low genome-size. Taken together, our findings support the concept that C and N cycling processes can be explained by the property of the soil microbial community to keep the element ratio of its biomass constant and by its reaction to soil acidification. Our findings suggest that predicted elevated N inputs might largely shape soil C and N cycling because the soil microbial community adjusts metabolic processes, which allows it to maintain its biomass stoichiometry constant.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: BAYCEER151709
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Bodenökologie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Bodenökologie > Lehrstuhl Bodenökologie - Univ.-Prof. Dr. Eva Lehndorff
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
Eingestellt am: 20 Jan 2020 10:45
Letzte Änderung: 20 Feb 2023 13:23
URI: https://eref.uni-bayreuth.de/id/eprint/53893