## Title data

Elsenhans, Andreas-Stephan ; Jahnel, Jörg:

**Cubic surfaces with a Galois invariant pair of Steiner trihedra.**

*In:* International Journal of Number Theory.
Vol. 7
(2011)
Issue 4
.
- pp. 947-970.

ISSN 1793-0421

DOI: https://doi.org/10.1142/S1793042111004253

## Project information

Project financing: |
Deutsche Forschungsgemeinschaft |
---|

## Abstract in another language

We present a method to construct non-singular cubic surfaces over Q with a Galois invariant pair of Steiner trihedra. We start with cubic surfaces in a form generalizing that of Cayley and Salmon. For these, we develop an explicit version of Galois descent.

## Further data

Item Type: | Article in a journal |
---|---|

Refereed: | Yes |

Keywords: | Cubic surface; generalized Cayley–Salmon form; Steiner trihedron; triple of
azygetic double-sixes; explicit Galois descent |

Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics II Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics |

Result of work at the UBT: | Yes |

DDC Subjects: | 500 Science > 510 Mathematics |

Date Deposited: | 22 Jan 2015 10:14 |

Last Modified: | 22 Jan 2015 10:14 |

URI: | https://eref.uni-bayreuth.de/id/eprint/5806 |