Titelangaben
Feulner, Thomas:
Canonization of linear codes over ℤ₄.
In: Advances in Mathematics of Communications.
Bd. 5
(2011)
Heft 2
.
- S. 245-266.
ISSN 1930-5346
DOI: https://doi.org/10.3934/amc.2011.5.245
Angaben zu Projekten
Projektfinanzierung: |
The research of the author was supported by a scholarship awarded by the Bayerische Eliteförderung. |
---|
Abstract
Two linear codes C, C' ≤ ℤ₄^n 4 are equivalent if there is a permutation π ∈ S_n of the coordinates and a vector φ ∈ {1, 3}^n of column multiplications such that (φ;π)C = C'. This generalizes the notion of code equivalence of linear codes over finite fields.
In a previous paper, the author has described an algorithm to compute the canonical form of a linear code over a finite field. In the present paper, analgorithm is presented to compute the canonical form as well as the automorphism group of a linear code over ℤ₄. This solves the isomorphism problem for ℤ₄-linear codes. An efficient implementation of this algorithm is described and some results on the classification of linear codes over ℤ₄ for small parameters are discussed.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Automorphism group, canonization, coding theory, group action, representative, isometry, Z4-linear code. |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 22 Jan 2015 09:52 |
Letzte Änderung: | 22 Jan 2015 09:52 |
URI: | https://eref.uni-bayreuth.de/id/eprint/5833 |