Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Directed Subdifferentiable Functions and the Directed Subdifferential Without Delta-Convex Structure

Titelangaben

Baier, Robert ; Farkhi, Elza ; Roshchina, Vera:
Directed Subdifferentiable Functions and the Directed Subdifferential Without Delta-Convex Structure.
In: Journal of Optimization Theory and Applications. Bd. 160 (2014) Heft 2 . - S. 391-414.
ISSN 0022-3239
DOI: https://doi.org/10.1007/s10957-013-0401-x

Rez.:

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: The Hermann Minkowski Center for Geometry at Tel Aviv University, Tel Aviv, Israel and University of Ballarat ‘Self-sustaining Regions Research and Innovation Initiative’, an Australian Government Collaborative Research Network (CRN)

Abstract

We show that the directed subdifferential introduced for differences of convex (delta-convex, DC) functions by Baier and Farkhi can be constructed from the directional derivative without using any information on the delta-convex structure of the function. The new definition extends to a more general class of functions, which includes Lipschitz functions definable on $o$-minimal structure and quasidifferentiable functions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: Contents:
1. Introduction
2. Directed Sets – a Brief Overview
3. The Directed Subdifferential with Known Delta-Convex Structure
4. The Directed Subdifferential Without a Delta-Convex Structure
4.1 Convex Functions
4.2 Delta-Convex and Quasidifferentiable Functions
5. Extension of the Directed Subdifferential
5.1 Directed Subdifferentiable Functions
5.2 Extension to Directed Subdifferentiable Functions
5.3 The Class of Directed Subdifferentiable Functions
6. Conclusions
published in arXiv at December 2012 and in JOTA Online First at September 2013;
Keywords: nonconvex subdifferentials; directional derivatives; difference of convex (delta-convex, DC) functions; differences of sets
Fachklassifikationen: Mathematics Subject Classification Code: 49J52 (90C26 26B25 58C20)
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 29 Jan 2015 07:11
Letzte Änderung: 01 Sep 2015 10:03
URI: https://eref.uni-bayreuth.de/id/eprint/6117