Titelangaben
    
    Camilli, Fabio ; Grüne, Lars ; Wirth, Fabian:
A Generalization of Zubov's Method to Perturbed Systems.
  
   
    
    In: SIAM Journal on Control and Optimization.
      
      Bd. 40
      
      (2001)
       Heft  2
    .
     - S. 496-515.
    
    
ISSN 1095-7138
    
    
      
DOI: https://doi.org/10.1137/S036301299936316X
    
    
    
     
  
  
Weitere URLs
Abstract
A generalization of Zubov's theorem on representing the domain of attraction via the solution of a suitable partial differential equation is presented for the case of perturbed systems with a singular fixed point. For the construction it is necessary to consider solutions in the viscosity sense. As a consequence maximal robust Lyapunov functions can be characterized as viscosity solutions.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift | 
|---|---|
| Begutachteter Beitrag: | Ja | 
| Keywords: | Asymptotic stability; Zubov's method; Robust stability; Domain of attraction; Viscosity solutions | 
| Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne | 
| Titel an der UBT entstanden: | Nein | 
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Eingestellt am: | 23 Feb 2021 09:14 | 
| Letzte Änderung: | 11 Mai 2021 11:27 | 
| URI: | https://eref.uni-bayreuth.de/id/eprint/63324 | 
 
        
 bei Google Scholar
 bei Google Scholar