Titelangaben
Gathungu, Duncan ; Bebendorf, Mario ; Borzì, Alfio:
Hierarchical-matrix method for a class of diffusion-dominated partial integro-differential equations.
In: Numerical Linear Algebra with Applications.
Bd. 29
(2022)
Heft 1
.
- e2410.
ISSN 1099-1506
DOI: https://doi.org/10.1002/nla.2410
Abstract
A hierarchical matrix approach for solving diffusion-dominated partial integro-differential problems is presented. The corresponding diffusion-dominated differential operator is discretized by a second-order accurate finite-volume scheme, while the Fredholm integral term is approximated by the trapezoidal rule. The hierarchical matrix approach is used to approximate the resulting algebraic problem and includes the implementation of an efficient preconditioned generalized minimum residue (GMRes) solver. This approach extends previous work on integral forms of boundary element methods by taking into account inherent characteristics of the diffusion-dominated differential operator in the resultant algebraic problem. Numerical analysis estimates of the accuracy and stability of the finite-volume and the trapezoidal rule approximation are presented and combined with estimates of the hierarchical-matrix approximation and with the accuracy of the GMRes iterates. Results of numerical experiments are reported that successfully validate the theoretical accuracy and convergence estimates, and demonstrate the almost optimal computational complexity of the proposed solution procedure.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen > Lehrstuhl Wissenschaftliches Rechnen - Univ.-Prof. Dr. Mario Bebendorf Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 31 Jan 2022 08:56 |
Letzte Änderung: | 30 Jul 2024 13:29 |
URI: | https://eref.uni-bayreuth.de/id/eprint/68535 |