Titelangaben
Köhler, Hannes ; Christmann, Andreas:
Total Stability of SVMs and Localized SVMs.
In: Journal of Machine Learning Research.
Bd. 23
(2022)
Heft 100
.
- S. 1-41.
ISSN 1533-7928
Abstract
Regularized kernel-based methods such as support vector machines (SVMs) typically depend on the underlying probability measure P (respectively an empirical measure Dn in applications) as well as on the regularization parameter λ and the kernel k. Whereas classical statistical robustness only considers the effect of small perturbations in P, the present paper investigates the influence of simultaneous slight variations in the whole triple (P,λ,k), respectively (Dn,λn,k), on the resulting predictor. Existing results from the literature are considerably generalized and improved. In order to also make them applicable to big data, where regular SVMs suffer from their super-linear computational requirements, we show how our results can be transferred to the context of localized learning. Here, the effect of slight variations in the applied regionalization, which might for example stem from changes in P respectively Dn, is considered as well.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | statistical robustness; stability; localized learning; kernel methods; big data |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik > Lehrstuhl Mathematik VII - Stochastik - Univ.-Prof. Dr. Andreas Christmann |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 12 Mai 2022 06:27 |
Letzte Änderung: | 12 Mai 2022 06:27 |
URI: | https://eref.uni-bayreuth.de/id/eprint/69576 |