Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

On α-points of q-analogs of the Fano plane

Titelangaben

Kiermaier, Michael:
On α-points of q-analogs of the Fano plane.
In: Designs, Codes and Cryptography. Bd. 90 (2022) Heft 6 . - S. 1335-1345.
ISSN 1573-7586
DOI: https://doi.org/10.1007/s10623-022-01033-3

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Arguably, the most important open problem in the theory of q-analogs of designs is the question regarding the existence of a q-analog D of the Fano plane. As of today, it remains undecided for every single prime power order q of the base field. A point P is called an α-point of D if the derived design of D in P is a geometric spread. In 1996, Simon Thomas has shown that there always exists a non-α-point. For the binary case q = 2, Olof Heden and Papa Sissokho have improved this result in 2016 by showing that the non-α-points must form a blocking set with respect to the hyperplanes. In this article, we show that a hyperplane consisting only of α-points implies the existence of a partition of the symplectic generalized quadrangle W(q) into spreads. As a consequence, the statement of Heden and Sissokho is generalized to all primes q and all even values of q.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Subspace design; q-analog; Fano plane; Steiner system; Subspace code
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 10 Sep 2022 21:00
Letzte Änderung: 23 Nov 2022 07:30
URI: https://eref.uni-bayreuth.de/id/eprint/71787