Titelangaben
Kiermaier, Michael:
On α-points of q-analogs of the Fano plane.
In: Designs, Codes and Cryptography.
Bd. 90
(2022)
Heft 6
.
- S. 1335-1345.
ISSN 1573-7586
DOI: https://doi.org/10.1007/s10623-022-01033-3
Abstract
Arguably, the most important open problem in the theory of q-analogs of designs is the question regarding the existence of a q-analog D of the Fano plane. As of today, it remains undecided for every single prime power order q of the base field. A point P is called an α-point of D if the derived design of D in P is a geometric spread. In 1996, Simon Thomas has shown that there always exists a non-α-point. For the binary case q = 2, Olof Heden and Papa Sissokho have improved this result in 2016 by showing that the non-α-points must form a blocking set with respect to the hyperplanes. In this article, we show that a hyperplane consisting only of α-points implies the existence of a partition of the symplectic generalized quadrangle W(q) into spreads. As a consequence, the statement of Heden and Sissokho is generalized to all primes q and all even values of q.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Subspace design; q-analog; Fano plane; Steiner system; Subspace code |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 10 Sep 2022 21:00 |
Letzte Änderung: | 23 Nov 2022 07:30 |
URI: | https://eref.uni-bayreuth.de/id/eprint/71787 |