Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The origin of ferroelectricity in Hf₁₋ₓZrₓO₂ : A computational investigation and a surface energy model

Titelangaben

Materlik, R. ; Künneth, Christopher ; Kersch, A.:
The origin of ferroelectricity in Hf₁₋ₓZrₓO₂ : A computational investigation and a surface energy model.
In: Journal of Applied Physics. Bd. 117 (2015) Heft 13 . - 134109.
ISSN 1089-7550
DOI: https://doi.org/10.1063/1.4916707

Abstract

The structural, thermal, and dielectric properties of the ferroelectric phase of HfO2, ZrO2, and Hf0.5Zr0.5O2 (HZO) are investigated with carefully validated density functional computations. We find that the free bulk energy of the ferroelectric orthorhombic Pca21 phase is unfavorable compared to the monoclinic P21/c and the orthorhombic Pbca phase for all investigated stoichiometries in the Hf1−xZrxO2 system. To explain the existence of the ferroelectric phase in nanoscale thin films, we explore the Gibbs/Helmholtz free energies as a function of stress and film strain and find them unlikely to become minimal in HZO films for technological relevant conditions. To assess the contribution of surface energy to the phase stability, we parameterize a model, interpolating between existing data, and find the Helmholtz free energy of ferroelectric grains minimal for a range of size and stoichiometry. From the model, we predict undoped HfO2 to be ferroelectric for a grain size of about 4 nm and epitaxial HZO below 5 nm. Furthermore, we calculate the strength of an applied electric field necessary to cause the antiferroelectric phase transformation in ZrO2 from the P42/nmc phase as 1 MV/cm in agreement with experimental data, explaining the mechanism of field induced phase transformation.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 05 Mai 2023 08:58
Letzte Änderung: 05 Mai 2023 08:58
URI: https://eref.uni-bayreuth.de/id/eprint/76139