Titelangaben
Köhler, Hannes:
Lp- and Risk Consistency of Localized SVMs.
Bayreuth
,
2023
. - 29 S.
DOI: https://doi.org/10.48550/arXiv.2305.09385
Abstract
Kernel-based regularized risk minimizers, also called support vector machines (SVMs), are known to possess many desirable properties but suffer from their super-linear computational requirements when dealing with large data sets. This problem can be tackled by using localized SVMs instead, which also offer the additional advantage of being able to apply different hyperparameters to different regions of the input space. In this paper, localized SVMs are analyzed with regards to their consistency. It is proven that they inherit $L_p$- as well as risk consistency from global SVMs under very weak conditions and even if the regions underlying the localized SVMs are allowed to change as the size of the training data set increases.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | localized learning; consistency; kernel methods; support vector machines; big data |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen - Univ.-Prof. Dr. Andreas Christmann |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 19 Mai 2023 07:31 |
Letzte Änderung: | 19 Mai 2023 07:31 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76463 |