Titelangaben
Klapproth, Corinna ; Schiela, Anton ; Deuflhard, Peter:
Adaptive timestep control for the contact-stabilized Newmark method.
In: Numerische Mathematik.
Bd. 119
(2011)
Heft 1
.
- S. 49-81.
ISSN 0029-599X
DOI: https://doi.org/10.1007/s00211-011-0374-3
Rez.: |
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID DFG Research Center Matheon "Mathematics for key technologies" FZT 86 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
The aim of this paper is to devise an adaptive timestep control in the contact-stabilized Newmark method (ContacX) for dynamical contact problems between two viscoelastic bodies in the framework of Signorini’s condition. In order
to construct a comparative scheme of higher order accuracy, we extend extrapolation techniques. This approach demands a subtle theoretical investigation of an asymptotic
error expansion of the contact-stabilized Newmark scheme. On the basis of theoretical insight and numerical observations, we suggest an error estimator and a timestep selection which also cover the presence of contact. Finally, we give a numerical example.