Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints

Titelangaben

Boccia, Andrea ; Grüne, Lars ; Worthmann, Karl:
Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints.
In: MTNS 2014 : Proceedings on the 21st International Symposium on Mathematical Theory of Networks and Systems, July 7-11, 2014, University of Groningen. - Groningen , 2014 . - S. 453-460
ISBN 978-90-367-6321-9

Dies ist die aktuelle Version des Eintrags.

Volltext

Link zum Volltext (externe URL): Volltext

Weitere URLs

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Marie-Curie Initial Training Network "Sensitivity Analysis for Deterministic Controller Design" (SADCO)
264735-SADCO
DFG Grant
GR1569/12-2

Projektfinanzierung: 7. Forschungsrahmenprogramm für Forschung, technologische Entwicklung und Demonstration der Europäischen Union
Deutsche Forschungsgemeinschaft

Abstract

This paper is concerned with stability and recursive feasibility of constrained linear receding horizon control schemes without terminal constraints and costs. Particular attention is paid to characterize the basin of attraction S of the asymptotically stable equilibrium. For stabilizable linear systems with quadratic costs and convex constraints we show that any compact subset of the interior of the viability kernel is contained in S for sufficiently large optimization horizon N. An analysis at the boundary of the viability kernel provides a connection between the growth of the infinite horizon optimal value function and stationarity of the feasible sets. Several examples are provided which illustrate the results obtained.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Zusätzliche Informationen: Paper No. 105, full paper.
Keywords: model predictive control; stability; recursive feasibility
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Profilfelder
Profilfelder > Advanced Fields
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 19 Mär 2015 10:27
Letzte Änderung: 09 Jan 2024 13:29
URI: https://eref.uni-bayreuth.de/id/eprint/8419

Zu diesem Eintrag verfügbare Versionen