Titelangaben
Popovic, Gordana ; Mason, Tanya Jane ; Drobniak, Szymon Marian ; Marques, Tiago André ; Potts, Joanne ; Joo, Rocío ; Altwegg, Res ; Burns, Carolyn Claire Isabelle ; McCarthy, Michael Andrew ; Johnston, Alison ; Nakagawa, Shinichi ; McMillan, Louise ; Devarajan, Kadambari ; Taggart, Patrick Leo ; Wunderlich, Alison ; Mair, Magdalena ; Martínez-Lanfranco, Juan Andrés ; Lagisz, Malgorzata ; Pottier, Patrice:
Four principles for improved statistical ecology.
In: Methods in Ecology and Evolution.
Bd. 15
(2024)
Heft 2
.
- S. 266-281.
ISSN 2041-210X
DOI: https://doi.org/10.1111/2041-210X.14270
Dies ist die aktuelle Version des Eintrags.
Abstract
1. Increasing attention has been drawn to the misuse of statistical methods over re-cent years, with particular concern about the prevalence of practices such as poor experimental design, cherry picking and inadequate reporting. These failures are largely unintentional and no more common in ecology than in other scientific dis-ciplines, with many of them easily remedied given the right guidance.
2. Originating from a discussion at the 2020 International Statistical Ecology Conference, we show how ecologists can build their research following four guiding principles for impactful statistical research practices: (1) define a focussed research question, then plan sampling and analysis to answer it; (2) develop a model that ac-counts for the distribution and dependence of your data; (3) emphasise effect sizes to replace statistical significance with ecological relevance; and (4) report your meth-ods and findings in sufficient detail so that your research is valid and reproducible.
3. These principles provide a framework for experimental design and reporting that guards against unsound practices. Starting with a well-defined research question allows researchers to create an efficient study to answer it, and guards against poor research practices that lead to poor estimation of the direction, magnitude, and uncertainty of ecological relationships, and to poor replicability. Correct and appropriate statistical models give sound conclusions. Good reporting practices and a focus on ecological relevance make results impactful and replicable.
4. Illustrated with two examples—an experiment to study the impact of disturbance on upland wetlands, and an observational study on blue tit colouring—this paper explains the rationale for the selection and use of effective statistical practices and provides practical guidance for ecologists seeking to improve their use of statistical methods.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | HARKing; model assumptions; p-hacking; pre-registration; p-values; questionable research practices; reproducibility crisis; research waste |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER Fakultäten Forschungseinrichtungen Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
Eingestellt am: | 24 Jan 2024 06:20 |
Letzte Änderung: | 12 Sep 2024 12:27 |
URI: | https://eref.uni-bayreuth.de/id/eprint/88324 |
Zu diesem Eintrag verfügbare Versionen
-
Four principles for improved statistical ecology. (deposited 07 Feb 2023 07:51)
- Four principles for improved statistical ecology. (deposited 24 Jan 2024 06:20) [Aktuelle Anzeige]