Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

L∞-error bounds for approximations of the Koopman operator by kernel extended dynamic mode decomposition

Titelangaben

Köhne, Frederik ; Philipp, Friedrich M. ; Schaller, Manuel ; Schiela, Anton ; Worthmann, Karl:
L∞-error bounds for approximations of the Koopman operator by kernel extended dynamic mode decomposition.
Ilmenau ; Bayreuth , 2024 . - 21 S.
DOI: https://doi.org/10.48550/arXiv.2403.18809

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Extended dynamic mode decomposition (EDMD) is a well-established method to generate a data-driven approximation of the Koopman operator for analysis and prediction of nonlinear dynamical systems. Recently, kernel EDMD (kEDMD) has gained popularity due to its ability to resolve the challenging task of choosing a suitable dictionary by defining data-based observables. In this paper, we provide the first pointwise bounds on the approximation error of kEDMD. The main idea consists of two steps. First, we show that the reproducing kernel Hilbert spaces of Wendland functions are invariant under the Koopman operator. Second, exploiting that the learning problem given by regression in the native norm can be recast as an interpolation problem, we prove our novel error bounds by using interpolation estimates. Finally, we validate our findings with numerical experiments.

Weitere Angaben

Publikationsform: Preprint, Postprint
Begutachteter Beitrag: Ja
Keywords: Kernel EDMD; Koopman operator; RKHS; interpolation; uniform error bounds
Fachklassifikationen: MSC classes: 37M99, 41A05, 47B32, 47B33, 65D12
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik (Angewandte Mathematik)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik (Angewandte Mathematik) > Lehrstuhl Angewandte Mathematik (Angewandte Mathematik) - Univ.-Prof. Dr. Anton Schiela
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 02 Apr 2024 09:30
Letzte Änderung: 02 Apr 2024 09:30
URI: https://eref.uni-bayreuth.de/id/eprint/89097