Titelangaben
Biswas, Arpan ; Apsite, Indra ; Rosenfeldt, Sabine ; Bite, Ivita ; Vitola, Virginija ; Ionov, Leonid:
Modular photoorigami-based 4D manufacturing of vascular junction elements.
In: Journal of Materials Chemistry B.
Bd. 12
(2024)
Heft 22
.
- S. 5405-5417.
ISSN 2050-7518
DOI: https://doi.org/10.1039/D4TB00236A
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Fabrikation von Mikrofasern mit komplexem Interieur durch formverändernde Polymere 396913955 Form-verändernde Polymer-Origami mit räumlich und zeitlich vollständig-programmierbarer Faltung 424722442 Herstellung von Gefäßnetzwerken basierend auf formverändernden Polymeren in 3D gedruckten Hydrogelen 427208737 Reversible Semicrystalline Polymeric Actuators 398193778 TRR 225: Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen 326998133 |
|---|---|
| Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
Four-dimensional (4D) printing, combining three-dimensional (3D) printing with time-dependent stimuli-responsive shape transformation, eliminates the limitations of the conventional 3D printing technique for the fabrication of complex hollow constructs. However, existing 4D printing techniques have limitations in terms of the shapes that can be created using a single shape-changing object. In this paper, we report an advanced 4D fabrication approach of a vascular junction, particularly the T-junction, using the 4D printing technique based on coordinated sequential folding of two or more specially designed shape-changing elements. In our approach, the T-junction is split into two components, and each component is 4D printed using different synthesized shape memory polyurethanes and their nanohybrids, which have been synthesized with varying hard segment content and by incorporating different weight percentages of photo-responsive copper sulfide-poly vinyl pyrrolidone nanoparticles. The formation of a T-junction is demonstrated by assigning different shape memory behaviors to each component of the T-junction. A cell culture study with human umbilical vein endothelial cells reveals that the cells are proliferating with time, and almost 90% of cells are viable on day 7. Finally, the formation of T-junction in the presence of near-infrared light has been demonstrated after seeding the endothelial cells on the programmed flat surface of the two components and the immunohistochemical analysis at day 3 and 7 reveals that the cells are adhered nicely and proliferating with time. Hence, the proposed alternative approach has huge potential and can be used to fabricate vascular junctions in the future.

bei Google Scholar