Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Lp- and Risk Consistency of Localized SVMs

Titelangaben

Köhler, Hannes:
Lp- and Risk Consistency of Localized SVMs.
In: Neurocomputing. Bd. 598 (2024) . - 128060.
ISSN 0925-2312
DOI: https://doi.org/10.1016/j.neucom.2024.128060

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Kernel-based regularized risk minimizers, also called support vector machines (SVMs), are known to possess many desirable properties but suffer from their super-linear computational requirements when dealing with large data sets. This problem can be tackled by using localized SVMs instead, which also offer the additional advantage of being able to apply different hyperparameters to different regions of the input space. In this paper, localized SVMs are analyzed with regards to their consistency. It is proven that they inherit Lp- as well as risk consistency from global SVMs under very weak conditions. Though there already exist results on the latter of these two properties, this paper significantly generalizes them, notably also allowing the regions that underlie the localized SVMs to change as the size of the training data set increases, which is a situation also typically occurring in practice.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Localized learning; Consistency; Kernel methods; Support vector machines; Big data
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen - Univ.-Prof. Dr. Andreas Christmann
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 25 Jun 2024 07:36
Letzte Änderung: 25 Jun 2024 07:36
URI: https://eref.uni-bayreuth.de/id/eprint/89830