Titelangaben
Köhler, Hannes:
Lp- and Risk Consistency of Localized SVMs.
In: Neurocomputing.
Bd. 598
(2024)
.
- 128060.
ISSN 0925-2312
DOI: https://doi.org/10.1016/j.neucom.2024.128060
Angaben zu Projekten
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
---|
Abstract
Kernel-based regularized risk minimizers, also called support vector machines (SVMs), are known to possess many desirable properties but suffer from their super-linear computational requirements when dealing with large data sets. This problem can be tackled by using localized SVMs instead, which also offer the additional advantage of being able to apply different hyperparameters to different regions of the input space. In this paper, localized SVMs are analyzed with regards to their consistency. It is proven that they inherit Lp- as well as risk consistency from global SVMs under very weak conditions. Though there already exist results on the latter of these two properties, this paper significantly generalizes them, notably also allowing the regions that underlie the localized SVMs to change as the size of the training data set increases, which is a situation also typically occurring in practice.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Localized learning; Consistency; Kernel methods; Support vector machines; Big data |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen > Lehrstuhl Mathematik VII - Stochastik und maschinelles Lernen - Univ.-Prof. Dr. Andreas Christmann |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 25 Jun 2024 07:36 |
Letzte Änderung: | 25 Jun 2024 07:36 |
URI: | https://eref.uni-bayreuth.de/id/eprint/89830 |