Titelangaben
    
    Zhang, Heyou ; Dharpure, Pankaj ; Philipp, Michael ; Mulvaney, Paul ; Thelakkat, Mukundan ; Köhler, Jürgen:
Purely Optical, Reversible, Read-Write-Erase Cycling Using Photoswitchable Beads in Micropatterned Arrays.
  
   
    
    In: Advanced Optical Materials.
      
      Bd. 12
      
      (2024)
       Heft  26
    .
    
     - 2401029.
    
ISSN 2195-1071
    
    
    
      
DOI: https://doi.org/10.1002/adom.202401029
     
    
    
     
  
  
Angaben zu Projekten
| Projekttitel: | Offizieller Projekttitel Projekt-ID Solar Technologies go Hybrid (SolTech) Ohne Angabe GRK 2818:  Optische Anregungen in organischen und anorganischen Halbleitern: Verstehen und Kontrollieren durch externe Stimuli 464648186 Optische logische Schaltkreise auf der Basis photochromer Bausteine mittels Wellenleiter Strukturen 448846348 | 
|---|---|
| Projektfinanzierung: | Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst Deutsche Forschungsgemeinschaft | 
Abstract
Using surface-templated electrophoretic deposition, arrays of polymer beads (photonic units) incorporating photo-switchable DAE molecules are created, which can be reversibly and individually switched between high and low emission states by direct photo-excitation, without any energy or electron transfer processes within the molecular system. The micropatterned array of these photonic units is spectroscopically characterized in detail and optimized with respect to both signal contrast and cross-talk. The optimum optical parameters including laser intensity, wavelength and duration of irradiation are elucidated and ideal conditions for creating reversible on/off cycles in a micropatterned array are determined. 500 such cycles are demonstrated with no obvious on/off contrast attenuation. The ability to process binary information is demonstrated by selectively writing information to the given photonic unit, reading the resultant emissive signal pattern and finally erasing the information again, which in turn demonstrates the possibility of continuous recording. This basic study paves the way for building complex circuits using spatially well-arranged photonic units.
 
        
 bei Google Scholar
 bei Google Scholar