Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Logging operations creating snags, logs, and stumps under open and closed canopies promote stand-scale beetle diversity

Titelangaben

Rothacher, Julia ; Hagge, Jonas ; Bässler, Claus ; Brandl, Roland ; Gruppe, Axel ; Müller, Jörg:
Logging operations creating snags, logs, and stumps under open and closed canopies promote stand-scale beetle diversity.
In: Forest Ecology and Management. Bd. 540 (2023) . - 121022.
ISSN 0378-1127
DOI: https://doi.org/10.1016/j.foreco.2023.121022

Abstract

Conservation tools to enrich habitat diversity in the widely distributed homogeneous production forests include stumps as logging residues but also the intentional creation of logs or snags, as well as varying canopy conditions. While an open canopy has been shown to foster forest biodiversity, the impact of different deadwood types at stand scale is less clear, which is crucial since this is the most relevant scale for silvicultural decisions. In this study, we experimentally manipulated canopy conditions (open vs. closed) and created deadwood (stumps, logs, snags) in different combinations in five mature European beech (Fagus sylvatica L.) forests to test the potential of active manipulations to increase the diversity of beetles, one of the most diverse insect orders in temperate forests. We estimated abundance, species number and species richness (controlled for abundance) of saproxylic (i.e., deadwood-dependent) and non-saproxylic beetles using flight-interception traps and analyzed species assemblages within the first 3 years of the experiment. Using generalized linear mixed effect models we found a 33.7 % and 43.4 % higher abundance as well as a 26.1 % and 23.5 % higher species number under open canopies for saproxylic and non-saproxylic beetles respectively, accompanied by a higher species richness of both groups. Stands with deadwood had a 38.6 % and 32.7 % higher species number followed by higher species richness of saproxylic and non-saproxylic beetles compared to stands without manipulation but manipulations did not affect beetle abundances. We identified sampling year, followed by canopy condition and deadwood type (in addition to an overall higher impact of spatial distance between stands and sites) by applying multiple regression analyses as most important to explain species assemblages of both beetle groups. Saproxylic abundance and species number in stump treatments were initially high but decreased over 3 years, while treatments containing snags and logs resulted in an increase in both abundance and species number over time. These temporal trends were mediated by canopy cover. Our findings provide three major insights for biodiversity-orientated management in mature beech forests: First, opening the canopy increases the stand-scale abundance, species number, and species richness of saproxylic and non-saproxylic beetles. Second, while stumps are attractive for saproxylics shortly after the logging operation, snags and logs provide longer-lasting deadwood resources, thus underlining longer sustainability of snag and log enrichment for forest biodiversity. Third, deadwood enrichment at the stand scale promotes not only deadwood-dependent but also other beetle species.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Coarse woody debris; Coleoptera; Deadwood; Experiment; Microclimate; Spatial arrangement
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Ökologie der Pilze > Lehrstuhl Ökologie der Pilze - Univ.-Prof. Dr. Claus Bässler
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Eingestellt am: 07 Nov 2024 11:30
Letzte Änderung: 07 Nov 2024 11:30
URI: https://eref.uni-bayreuth.de/id/eprint/90983