Titelangaben
Glück, Jochen ; Mironchenko, Andrii:
Stability criteria for positive semigroups on ordered Banach spaces.
In: Journal of Evolution Equations.
Bd. 25
(2025)
Heft 1
.
- 12.
ISSN 1424-3202
DOI: https://doi.org/10.1007/s00028-024-01044-8
| Rez.: |
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Lyapunovtheorie trifft Randwertregelung 415101813 |
|---|---|
| Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
We consider generators of positive C₀-semigroups and, more generally, resolvent positive operators A on ordered Banach spaces and seek for conditions ensuring the negativity of their spectral bound s(A). Our main result characterizes s(A) < 0 in terms of so-called small-gain conditions that describe the behaviour of Ax for positive vectors x. This is new even in case that the underlying space is an $L^p$-space or a space of continuous functions. We also demonstrate that it becomes considerably easier to characterize the property s(A) < 0 if the cone of the underlying Banach space has non-empty interior or if the essential spectral bound of A is negative. To treat the latter case, we discuss a counterpart of a Krein–Rutman theorem for resolvent positive operators. When A is the generator of a positive C₀-semigroup, our results can be interpreted as stability results for the semigroup, and as such, they complement similar results recently proved for the discrete-time case. In the same vein, we prove a Collatz–Wielandt type formula and a logarithmic formula for the spectral bound of generators of positive semigroups.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | positive systems; continuous-time systems; stability; small-gain condition; linear systems; semigroup theory; resolvent positive operator; Krein–Rutman theorem |
| Fachklassifikationen: | Mathematics Subject Classification Code: 47B65, 47D06, 47A10, 37L15 |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Profilfelder > Advanced Fields > Nichtlineare Dynamik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Profilfelder Profilfelder > Advanced Fields |
| Titel an der UBT entstanden: | Nein |
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| Eingestellt am: | 06 Mär 2025 08:56 |
| Letzte Änderung: | 25 Aug 2025 11:23 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/92636 |

bei Google Scholar