Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

ISS small-gain criteria for infinite networks with linear gain functions

Titelangaben

Mironchenko, Andrii ; Noroozi, Navid ; Kawan, Christoph ; Zamani, Majid:
ISS small-gain criteria for infinite networks with linear gain functions.
In: Systems & Control Letters. Bd. 157 (2021) . - 105051.
ISSN 1872-7956
DOI: https://doi.org/10.1016/j.sysconle.2021.105051

Weitere URLs

Abstract

This paper provides a Lyapunov-based small-gain theorem for input-to-state stability (ISS) of networks composed of infinitely many finite-dimensional systems. We model these networks on infinite-dimensional $l_\infty$-type spaces. A crucial assumption in our results is that the internal Lyapunov gains, modeling the influence of the subsystems on each other, are linear functions. Moreover, the gain operator built from the internal gains is assumed to be subadditive and homogeneous, which covers both max-type and sum-type formulations for the ISS Lyapunov functions of the subsystems. As a consequence, the small-gain condition can be formulated in terms of a generalized spectral radius of the gain operator. By an example, we show that the small-gain condition can easily be checked if the interconnection topology of the network has some sort of symmetry. While our main result provides an ISS Lyapunov function in implication form for the overall network, an ISS Lyapunov function in a dissipative form is constructed under mild extra assumptions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: 9 pp.
Keywords: networked systems; input-to-state stability; small-gain theorem; Lyapunov methods
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 17 Mär 2025 08:23
Letzte Änderung: 17 Mär 2025 08:23
URI: https://eref.uni-bayreuth.de/id/eprint/92851