Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering

Titelangaben

Koeck, Kim ; Trossmann, Vanessa T. ; Scheibel, Thomas:
3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering.
In: Advanced Functional Materials. Bd. 35 (2025) Heft 15 . - 2407760.
ISSN 1616-3028
DOI: https://doi.org/10.1002/adfm.202407760

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
TRR 225 Biofabrication
326998133

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Collagen is one main component of the extracellular matrix (ECM) in natural tissues and is, therefore, well suited as a biomaterial for tissue engineering. In this study, a method is presented to 3D-bioprint collagen into a precipitation bath comprising recombinantly produced spider silk protein eADF4(C16) yielding a composite with excellent mechanical properties. The spider silk precipitation bath induced assembly of the collagen into fibrils, and subsequent addition of potassium phosphate buffer lead to the formation of silk particles and stabilization of the collagen fibrils. The produced collagen-silk composite scaffolds show an internal structure of homogeneously distributed and interacting collagen fibrils and spider silk particles with significantly better mechanical properties compared to plain collagen scaffolds. Further, enzymatic degradation assays of the scaffolds over a 7-day period show higher stability of the collagen-silk scaffolds compared to plain collagen scaffolds in the presence of wound proteases. Using the spider silk variant eADF4(C16-RGD) further increases compressive stress and elastic modulus compared to that of the unmodified variant. Finally, it is shown that the unique collagen-spider silk composite scaffolds comprising the cell-binding domains of collagen and the RGD sequence in the spider silk variant represent a promising material for soft tissue regeneration.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: collagen-silk-composites; nanofibrils; protein–protein-interactions; self-assembly
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 26 Apr 2025 21:00
Letzte Änderung: 28 Apr 2025 06:27
URI: https://eref.uni-bayreuth.de/id/eprint/93377