Titelangaben
Baumann, Michael Heinrich:
Generalized Triangular Numbers and Combinatorial Explanations.
In: Recreational Mathematics Magazine.
Bd. 12
(2025)
Heft 20
.
- S. 103-119.
ISSN 2182-1976
DOI: https://doi.org/10.2478/rmm-2025-0006
Weitere URLs
Abstract
The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical, by combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral numbers. In this article, we discuss a generalization of triangular and tetrahedral numbers where the number of summation symbols is variable. We repeat results from the literature that state that these so-called generalized triangular numbers can be represented via multicombinations, i.e. combinations with repetitions, and give an illustrative explanation for this formula, which is based on combinatorics. Via high-dimensional illustrations, we show that these generalized triangular numbers are figurate numbers, namely hyper-tetrahedral numbers, see Figure 1. Additionally, we demonstrate that there is a relation between the height and the dimension of these hypertetrahedra, i.e. a series of generalized triangular numbers with fixed dimension and varying height can be represented as such a series with fixed height and varying dimension, and vice versa.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | Triangular Numbers; Combinatorics; Multicombinations; Figurate Numbers; Hypertetrahedron |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Modellierung und Simulation (MODUS) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Forschungseinrichtungen Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen |
| Titel an der UBT entstanden: | Ja |
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| Eingestellt am: | 01 Nov 2025 22:00 |
| Letzte Änderung: | 03 Nov 2025 06:42 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95086 |

bei Google Scholar