Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Generalized Triangular Numbers and Combinatorial Explanations

Titelangaben

Baumann, Michael Heinrich:
Generalized Triangular Numbers and Combinatorial Explanations.
In: Recreational Mathematics Magazine. Bd. 12 (2025) Heft 20 . - S. 103-119.
ISSN 2182-1976
DOI: https://doi.org/10.2478/rmm-2025-0006

Volltext

Link zum Volltext (externe URL): Volltext

Weitere URLs

Abstract

The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical, by combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral numbers. In this article, we discuss a generalization of triangular and tetrahedral numbers where the number of summation symbols is variable. We repeat results from the literature that state that these so-called generalized triangular numbers can be represented via multicombinations, i.e. combinations with repetitions, and give an illustrative explanation for this formula, which is based on combinatorics. Via high-dimensional illustrations, we show that these generalized triangular numbers are figurate numbers, namely hyper-tetrahedral numbers, see Figure 1. Additionally, we demonstrate that there is a relation between the height and the dimension of these hypertetrahedra, i.e. a series of generalized triangular numbers with fixed dimension and varying height can be represented as such a series with fixed height and varying dimension, and vice versa.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Triangular Numbers; Combinatorics; Multicombinations; Figurate Numbers; Hypertetrahedron
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Modellierung und Simulation (MODUS)
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 01 Nov 2025 22:00
Letzte Änderung: 03 Nov 2025 06:42
URI: https://eref.uni-bayreuth.de/id/eprint/95086