Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Synthesis of Amphiphilic Rod-Coil P3HT-b-P4VP Carrying a Long Conjugated Block Using NMRP and Click Chemistry

Title data

Lohwasser, Ruth H. ; Thelakkat, Mukundan:
Synthesis of Amphiphilic Rod-Coil P3HT-b-P4VP Carrying a Long Conjugated Block Using NMRP and Click Chemistry.
In: Macromolecules. Vol. 45 (2012) Issue 7 . - pp. 3070-3077.
ISSN 0024-9297
DOI: https://doi.org/10.1021/ma2024733

Project information

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

We use a combination of click chemistry and nitroxide-mediated radical polymerization (NMRP) for the incorporation of high molecular weight poly(3-hexylthiophenes) (P3HTs) segments into amphiphilic block copolymers. First, a high molecular weight alkyne-terminated P3HT was synthesized using Kumada catalyst transfer polymerization followed by in-situ end-capping with alkyne and by quenching with methanol. We found out that hydrochloric acid, the best quenching agent for nonfunctionalized P3HTs, leads to addition reactions with the alkyne group and therefore is not suitable for alkyne-terminated P3HT. With the use of copper-catalyzed azide-alkyne click reaction, P3HT-alkoxyamine is formed as a macroinitiator for NMRP. This was used to polymerize 4-vinylpyridine to get amphiphilic rod-coil P3HT-b-P4VP block copolymers with 55 and 77 wt % of poly(4-vinylpyridine) (P4VP). We investigate how the optical and thermal properties as well as the phase separation behavior depend on the block ratios. These P3HT-b-P4VP copolymers are interesting for hybrid organic photovoltaics as well as for studying the colloidal structures of semiconductor amphiphilic systems. The high molecular weight rod influences the rod-rod interaction as described by the Maier-Saupe parameter μ and therefore has consequences in the microphase separation.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Research Institutions
Research Institutions > Collaborative Research Centers, Research Unit
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 7
Graduate Schools
Graduate Schools > Elite Network Bavaria
Graduate Schools > Elite Network Bavaria > Macromolecular Science
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professor Applied Functional Polymers > Professor Applied Functional Polymers - Univ.-Prof. Dr. Mukundan Thelakkat
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professor Applied Functional Polymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 13 Apr 2016 06:41
Last Modified: 21 Jul 2016 07:35
URI: https://eref.uni-bayreuth.de/id/eprint/1192