Title data
Süß, Elke ; Wallschläger, Dirk ; Planer-Friedrich, Britta:
Stabilization of thioarsenates in iron-rich waters.
In: Chemosphere.
Vol. 83
(2011)
Issue 11
.
- pp. 1524-1531.
ISSN 1879-1298
DOI: https://doi.org/10.1016/j.chemosphere.2011.01.045
Abstract in another language
In recent years, thioarsenates have been shown to be important arsenic species in sulfidic, low-iron waters. Here, we show for the first time that thioarsenates also occur in iron-rich ground waters, and that all methods previously used to preserve arsenic speciation (acidification, flash-freezing, or EDTA addition) fail to preserve thioarsenates in such matrices. Laboratory studies were conducted to identify the best approach for stabilizing thioarsenates by combination and modification of the previously-applied methods. Since acidification was shown to induce conversions between thioarsenates and precipitation of arsenic-sulfide minerals, we first conducted a detailed study of thioarsenate preservation by flash-freezing. In pure water, thioarsenates were stable for 21 days when the samples were flash-frozen and cryo-stored with a minimal and anoxic headspace. Increasing headspace volume and oxygen presence in the headspace were detrimental to thioarsenate stability during cryo-storage. Addition of NaOH (0.1 mol/L) or EtOH (1% V/V) counteracted these effects and stabilized thioarsenates during cryo-storage. Addition of Fe(II) to thioarsenate solutions caused immediate changes in arsenic speciation and a loss of total arsenic from solution during cryo-storage. Both effects were largely eliminated by addition of a neutral EDTA solution, and thioarsenates were significantly stabilized during cryo-storage by this procedure. Neutralization of EDTA was required to prevent alteration of thioarsenate speciation through pH change. With the modified method (anoxic cryo-preservation by flash-freezing with minimal headspace after addition of neutralized EDTA-solution), the fractions of mono- and dithioarsenate, the two thioarsenates observed in the iron-rich ground waters, remained stable over a cryo-storage period of 11 days. Further modifications are needed for the higher SH-substituted thioarsenates (tri- and tetrathioarsenate), which were not encountered in the studied iron-rich ground waters.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Additional notes: | BAYCEER92225 |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professor Environmental Geochemistry Group Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professor Environmental Geochemistry Group > Professor Environmental Geochemistry - Univ.-Prof. Dr. Britta Planer-Friedrich Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences Research Institutions Research Institutions > Research Centres |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science |
Date Deposited: | 05 May 2015 12:10 |
Last Modified: | 10 Jan 2018 09:14 |
URI: | https://eref.uni-bayreuth.de/id/eprint/12787 |