Title data
Borken, Werner ; Davidson, Eric A. ; Savage, Kathleen ; Gaudinski, Julia B. ; Trumbore, Susan E.:
Drying and wetting effects on carbon dioxide release from organic horizons.
In: Soil Science Society of America Journal.
Vol. 67
(2003)
Issue 6
.
- pp. 1888-1896.
ISSN 0361-5995
DOI: https://doi.org/10.2136/sssaj2003.1888
Abstract in another language
Drying and wetting cycles of O horizon in forest soils have not received much attention, partly due to methodological limitations for nondestructive monitoring of the O horizon water content. The objective of this study was to determine the importance of moisture limitations in the O horizon of a temperate forest on summertime soil respiration. We measured soil respiration in three replicated plots in a mixed deciduous forest at Harvard Forest, Massachusetts, weekly from May to October 2001. Direct Current (DC) half-bridge sensors that had been calibrated using destructive samples of the Oi and Oe/Oa horizons were placed in the Oi and Oe/Oa horizons to record hourly changes of gravimetric water contents. Soil temperature explained 47% of the variation in soil respiration using the Arrhenius equation. The residuals of the temperature model were linearly correlated with gravimetric water content of the Oi horizon (r2 = 0.72, P < 0.0001) and Oe/Oa horizon (r2 = 0.56, P < 0.001), indicating that temporal variation in soil respiration can be partly explained by water content of the O horizon. Additionally, a laboratory study was performed to evaluate drying/wetting cycles of the O horizon at constant temperature. Even small simulated rainfall amounts of 0.5 mm significantly increase CO2 flux from dry O horizon within a few minutes. The duration of CO2 pulses increased with the amount of applied water, lasting from a few hours to days. A strong correlation between CO2 release and water content of the O horizons demonstrates a clear regulatory role of litter water content on decomposition within the O horizons. Abbreviations: DC, direct current • IRGA, infrared gas analyzer • SOC, soil organic carbon • TDR, Time domain reflectometry
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Additional notes: | BAYCEER14110 |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences Research Institutions Research Institutions > Research Centres |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science |
Date Deposited: | 09 Oct 2015 05:56 |
Last Modified: | 09 Oct 2015 05:56 |
URI: | https://eref.uni-bayreuth.de/id/eprint/20243 |