Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Spotting zones of dissimilatory sulfate reduction in a forested catchment : the 34S-35S approach

Title data

Alewell, Christine ; Novak, Martin:
Spotting zones of dissimilatory sulfate reduction in a forested catchment : the 34S-35S approach.
In: Environmental Pollution. Vol. 112 (2001) Issue 3 . - pp. 369-377.
ISSN 1873-6424
DOI: https://doi.org/10.1016/S0269-7491(00)00137-8

Abstract in another language

The localization of sulfate reducing sites in forested catchments is of major importance, because dissimilatory sulfate reduction can be a considerable sink for deposited sulfate. To localize dissimilatory sulfate reduction sites in a forested catchment (northeastern Bavaria, Germany), three sites within the catchment (upland site, intermittent seep, fen) were investigated for delta S-34 depth profiles of soil sulfur and potential sulfate reduction rates were measured with S-35 radiolabeling. Stable sulfur isotopes indicate that aerobic metabolism is the dominant process on the upland site and the intermittent seep (delta S-34 Of soil sulfur between + 1.6 and + 9.0 parts per thousand) and dissimilatory reduction is not a significant sink for sulfate. However, results of the S-35 radiolabeling indicated for the upland site that the soil has potentially high sulfate reduction rates under laboratory conditions. Soil sulfur of the fen was markedly depleted in S-34 (delta S-34 between -6 and +2.6 parts per thousand). Both, S-34 and S-35 data indicated that dissimilatory sulfate reduction is an ongoing process on this site. The S-34 and S-35 approaches are complementary. While measurements using S-35 can show momentary potential for dissimilatory bacterial sulfate reduction, delta S-34 data reflect long-term predominance of either assimilatory or dissimilatory S metabolism at a particular site.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER7498
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 09 Oct 2015 05:56
Last Modified: 09 Oct 2015 05:56
URI: https://eref.uni-bayreuth.de/id/eprint/20261