Title data
Saldivar-Guerrero, Ruben ; Richter, Reinhard ; Rehberg, Ingo ; Aksel, Nuri ; Heymann, Lutz ; Rodriguez-Fernández, Oliverio S.:
Viscoelasticity of mono- and polydisperse inverse ferrofluids.
In: The Journal of Chemical Physics.
Vol. 125
(2006)
Issue 8
.
- 084907.
ISSN 0021-9606
DOI: https://doi.org/10.1063/1.2337576
Abstract in another language
We report on measurements of a magnetorheological model fluid created by dispersing nonmagnetic microparticles of polystyrene in a commercial ferrofluid. The linear viscoelastic properties as a function of magnetic field strength, particle size, and particle size distribution are studied by oscillatory measurements. We compare the results with a magnetostatic theory proposed by De Gans et al. [Phys. Rev. E 60, 4518 (1999)] for the case of gap spanning chains of particles. We observe these chain structures via a long distance microscope. For monodisperse particles we find good agreement of the measured storage modulus with theory, even for an extended range, where the linear magnetization law is no longer strictly valid. Moreover we compare for the first time results for mono- and polydisperse particles. For the latter, we observe an enhanced storage modulus in the linear regime of the magnetization.