Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Donor-acceptor block copolymers carrying pendant PC71BM fullerenes with an ordered nanoscale morphology

Title data

Hufnagel, Martin ; Fischer, Matthias ; Thurn-Albrecht, Thomas ; Thelakkat, Mukundan:
Donor-acceptor block copolymers carrying pendant PC71BM fullerenes with an ordered nanoscale morphology.
In: Polymer Chemistry. Vol. 6 (2015) Issue 5 . - pp. 813-826.
ISSN 1759-9954
DOI: https://doi.org/10.1039/C4PY01357C

Official URL: Volltext

Project information

Project financing: Deutsche Forschungsgemeinschaft
Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Abstract in another language

We present a straightforward method for the preparation of a novel donor-acceptor block copolymer based on an acceptor block with pendant phenyl-C71-butyric methyl ester (PC71BM) and a regioregular poly(3-hexylthiophene) (P3HT) as a donor. First, a hydroxyl-functionalized polystyrene copolymer with an azide end group was synthesized via nitroxide-mediated radical polymerization (NMRP) and was coupled with alkyne-terminated P3HT using copper(i) catalyzed azide-alkyne cycloaddition (CuAAC). The grafting reaction of phenyl-C71-butyric acid (PC71BA) to the hydroxyl groups of the polystyrene precursor was optimized to yield near-quantitative conversion which is demonstrated for a PC71BM-grafted acceptor copolymer in detail using MALDI-TOF mass spectrometry, thermogravimetric analysis (TGA) and 1H-NMR spectroscopy. Owing to the incorporation of C70, the donor-acceptor block copolymer exhibits enhanced absorption in the entire visible range of 300 to 600 nm. A detailed structural analysis of the block copolymer based on small-angle X-ray scattering in transmission (SAXS) and in grazing incidence geometry (GISAXS) as well as scanning electron microscopy (SEM) gave clear evidence for the formation of a periodic nanostructure of 37 nm in bulk and in thin films.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Energy Research and Energy Technology
Research Institutions
Research Institutions > EU Research Projects
Research Institutions > EU Research Projects > LARGECELLS - Large-area Organic and Hybrid Solar Cells
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professor Applied Functional Polymers > Professor Applied Functional Polymers - Univ.-Prof. Dr. Mukundan Thelakkat
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professor Applied Functional Polymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science
500 Science > 540 Chemistry
Date Deposited: 23 Jun 2016 08:39
Last Modified: 19 Jul 2016 12:32
URI: https://eref.uni-bayreuth.de/id/eprint/32200