Titelangaben
    
    Kurz, Sascha ; Molinero, Xavier ; Olsen, Martin:
On the Construction of High Dimensional Simple Games.
  
    2016
    
    Veranstaltung: 22. European Conference on Artificial Intelligence (ECAI) 2016
     , 29.08-02.09.2016
     , The Hague, Holland.
    
    (Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung
     , 
      Vortrag
      )
     
    
  
  
Weitere URLs
Abstract
Voting is a commonly applied method for the aggregation of the preferences of multiple agents into a joint decision. If preferences are binary, i.e., yes and no, every voting system can be described by a (monotone) Boolean function. However, its naive encoding needs 2n bits. The subclass of threshold functions, which is sufficient for homogeneous agents, allows a more succinct representation using n weights and one threshold. For heterogeneous agents, one can represent χ as an intersection of k threshold functions. Taylor and Zwicker have constructed a sequence of examples requiring k>=2^(n/2-1). The magnitude of the worst-case situation was thought to be determined by Elkind et al. in 2008, but the analysis unfortunately turned out to be wrong. Here we uncover a relation to coding theory that allows the determination of the minimum number k for a subclass of voting systems. As an application, we give a new construction closing the gap from a representation complexity point of view.
Weitere Angaben
| Publikationsform: | Veranstaltungsbeitrag (Vortrag) | 
|---|---|
| Begutachteter Beitrag: | Ja | 
| Zusätzliche Informationen: | speaker: Martin Olsen | 
| Keywords: | simple games; dimension; error-correcting codes | 
| Fachklassifikationen: | Mathematics Subject Classification Code: 91B12 91A12 68P30 | 
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Profilfelder > Emerging Fields Profilfelder > Emerging Fields > Governance and Responsibility Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Profilfelder | 
| Titel an der UBT entstanden: | Ja | 
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Eingestellt am: | 22 Nov 2016 09:36 | 
| Letzte Änderung: | 06 Okt 2025 12:08 | 
| URI: | https://eref.uni-bayreuth.de/id/eprint/35166 | 
 
        
 bei Google Scholar
 bei Google Scholar