Title data
Kohnert, Axel ; Kurz, Sascha:
Integral point sets over Z_n^m.
In: Discrete Applied Mathematics.
Vol. 157
(2009)
Issue 9
.
- pp. 2105-2117.
ISSN 1872-6771
DOI: https://doi.org/10.1016/j.dam.2007.10.019
Related URLs
Abstract in another language
There are many papers studying properties of point sets in the Euclidean space Em or on integer grids Zm, with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of Z/Zn, and study the properties of the resulting combinatorial structures.
Abstract in another language
Viele Autoren studieren die Eigenschaften von Punktmengen in Euklidischen Räumen bzw. ganzzahligen Gittern, bei denen die paarweisen Abstände rational bzw. ganzzahlig sind. Hier betrachten wir Punktmengen bei denen die paarweisen Abstände und Koordinaten Elemente aus dem Restklassenring Z modulo nZ sind. Die enstehenden kombinatorischen Strukturen werden untersucht.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Keywords: | integral distances; exhaustive search; finite rings; orderly generation |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics II (Computer Algebra) Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics Faculties |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 510 Mathematics |
Date Deposited: | 19 Nov 2014 09:12 |
Last Modified: | 16 Mar 2023 11:45 |
URI: | https://eref.uni-bayreuth.de/id/eprint/3638 |